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Bank of High-gain Observers in Output Feedback
Control: Robustness Analysis Against Measurement

Noise
Kasra Esfandiari and Mehran Shakarami

Abstract—This paper analyzes output feedback control of a
class of unknown nonlinear systems in the presence of measure-
ment noise using multiple high-gain observers (MHGO). It is
well-known that single high-gain observers (HGO) are not able
to provide satisfactory performance when the system output is
contaminated by noise, and in turn, controllers, which utilize
such estimations, perform poorly. To address this issue and
improve the control performance, a bank of HGOs is employed,
and an appropriate combination of their estimations is used for
control purposes. The proposed strategy is capable of mitigating
destructive effects of measurement noise and improving transient
response, and it does that because it introduces an extra design
parameter. The performance recovery capabilities of MHGO-
based controllers and the stability of the closed-loop system are
discussed. Simulations are performed on an underwater vehicle
system and a mechanical system to evaluate the performance of
the MHGO-based controller. Furthermore, a detailed comparison
to controllers based on conventional HGO, HGO with switching
gain, and multi-observer approach is provided, which shows
the superiority of the MHGO-based controller over the other
methods.

I. INTRODUCTION

STATES of systems have a prominent role in control theory,
and many different strategies are developed by using

them. Since not all of system state variables are measurable
in practice, different observation schemes are presented in
the control literature. However, most of previous studies
were confined to systems with noise-free output to simplify
understudied problems. This assumption is not realistic since
measurements are mostly contaminated by noise; not only does
this cause unsatisfactory performance, but it may also push
the closed-loop system into instability. Hence, it is necessary
to investigate the robustness of observers and observer-based
controllers [1]. When a priori knowledge exists about the plant
and the measurement noise has specific features, Kalman filter
is known as a powerful tool for estimation purposes [2]. Sev-
eral other studies have been also carried out on this field, e.g.,
see [3]–[6] and references therein. In [3], a fusion estimation
algorithm is presented in terms of linear matrix inequalities for
a class of uncertain linear systems. This scheme is based on the
assumptions that the uncertain part of the plant satisfies certain
conditions and multiple sensors measure the output, each of
them has its own measurement noise. The problem of speed
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observation in mechanical systems is investigated in [4], and a
Luenberger-based observer is proposed, capabilities of which
in providing promising results in the presence of noise are
shown via experiment results. By combining the Kazantzis-
Kravaris-Luenberger observer and the parameter estimation-
based observer, a state observer design technique is presented
for nonlinear systems in [5], and its performance against
measurement noise is also discussed by simulations. In [6], an
adaptive observer is designed for a class of nonlinear systems
with known dynamics and noisy measurements. However, the
assumption of availability of a priori knowledge about system
dynamics is not always valid. Moreover, the control problem,
which is more challenging than the state estimation problem,
is remained intact in the works above.

On the other hand, high-gain observers are well-known as
powerful structures for state estimation of nonlinear systems.
These observers are capable of handling system uncertainties
and providing fast and accurate estimations if their gains
are chosen sufficiently large [7]. For control purposes, it has
been shown that by feeding sufficiently fast HGO-based state
estimations into a globally bounded controller, the output
feedback controller can recover the performance of the state
feedback controller [8]. HGOs, having these nice features,
have attracted a great deal of attention in the past few decades
and have been widely used in systems and control theory
[9]–[12]. However, conventional HGOs with large gains yield
state estimations with substantial overshoots/undershoots in
the transient response, known as the peaking phenomenon.
Such behavior may result in a closed-loop system with a finite
escape time, and in turn, might destabilize the overall plant
[13].

In addition to the peaking phenomenon, another problem
with the conventional HGOs is sensitivity to measurement
noise [7]. That is because the basic idea behind the con-
ventional HGOs is to differentiate the system output to get
estimations of immeasurable states. Thus, the performance
of HGO-based structures should be evaluated with extra
attentions since the effects of measurement noise will be
greatly amplified by differentiating the system output [14].
The impact of measurement noise on the state estimations of
HGOs is discussed in [15], and it has been shown that the
gain of observer should not be selected too large or too small.
In general, there is a trade-off between measurement noise
sensitivity and the convergence rate of state estimation [16].
However, in HGO-based feedback controllers, sufficiently fast
reconstruction of system states is a must to assure that an
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appropriate state estimation is available before the system
states leave the region of attraction [13]. In [17] and [18],
new HGO structures are proposed for nonlinear systems in
the presence of measurement noise. In [17], a large gain is
employed, initially, to estimate system states fast; then the
observer gain is switched to a smaller value to get a better
steady state behavior. Although the basic idea behind this
observation strategy is valuable, determining the switching
time and the transient peaks may become challenging. In [18],
a new structure is presented for HGOs in which the dimension
of the observer is 2n − 2 with a gain that grows up to power
2, where n is the number of state variables. However, the
proposed approach does not have any impact on second order
systems and the challenging control problem is remained intact
there.

Several attempts have been made to incorporate HGOs
with adaptive structures. In such observation strategies, intel-
ligent strategies (e.g., fuzzy systems, neural networks, etc.)
are employed to estimate the system uncertainties and that
approximation is fed into the dynamical equation of the
HGO-based structure [19]–[21]. Although such structures
may be applicable to a wide class of systems, they do not
necessarily provide a nice transient response, specially when
the initial conditions are chosen arbitrarily. Because, it takes
a relatively long time for the intelligent part to learn the
system dynamics, and in turn, these approaches result in
an oscillatory response which is an inherent drawback of
single adaptive models/structures [22]–[24]. On the other
hand, it has been shown that multiple model-based topologies
are capable of providing parameter and state estimations
with improved transient response [25], [26]. In [27]–[29],
the transient response improvement of adaptive systems and
observers is performed using the idea of switching between
multiple models. Two main drawbacks of the switching based
approaches are that a large number of models are needed to
guarantee improvement of performance and only information
of one model is employed at each time instant. To address
the problem of identification of constant parameters in linear
systems and avoid from the issues associated with switching
schemes, the idea of second level adaptation was proposed in
[30].

As motivated above, we will investigate the output feedback
control problem of nonlinear systems in the presence of
measurement noise. In this regard, a bank of HGOs are utilized
for state estimation purposes, which enables us to improve
the transient response of conventional HGOs and mitigate
destructive effects of measurement noise. The employed obser-
vation strategy, MHGO, uses all the information gathered from
various observers simultaneously, and a weighted summation
of these observations is considered as the final estimation. The
main contributions of the paper can be summarized as follows:

● It is shown that there exist some weights enabling us
to estimate the system states accurately and to speed up
the estimation process in the presence of noise. This re-
parameterization introduces an extra design parameter to
the problem; hence the need for a large gain, which is
required in the conventional HGOs, is mitigated.

● The output feedback control problem in the presence of

measurement noise is addressed, and the stability of the
closed-loop system is ensured by using the Lyapunov’s
direct method.

● It is proven that a separation principle is valid when
the state estimations provided by the MHGO are used
for control purposes, and the MHGO-based controller is
capable of recovering performance of the state feedback
controller.

● The robustness analysis of the MHGO-based controller is
discussed, and the conditions on the bound of measure-
ment noise and observer gain are derived.

The remainder of this paper is organized as follows: The
system equation and the problem under consideration are
stated in Section II. Section III includes some preliminaries
about convex sets and the HGO as well as the structure
of the MHGO and comments on its performance. The key
results on robustness analysis of the closed-loop system when
the MHGO-based estimations are fed into a controller are
presented in Section IV. Section V provides simulation results
for the proposed approach and comparisons with the existing
methods. Finally Section VI summarizes the paper.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a class of nonlinear systems in canonical form,

ẋ = Ax +Bf(x,u)

y = Cx + ν(t)
(1)

where x ∈ Rn represents the system state vector, and u ∈ R
and y ∈ R denote the system input and output, respectively.
The matrices A, B, and C are defined as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ ⋱ ⋱ 1
0 ⋯ ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮

0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

Furthermore, ν(t) expresses the output measurement noise
with an unknown upper bound of ν̄, i.e., ∥ν(t)∥ ≤ ν̄, and
f(x,u) is an unknown nonlinear function. To guarantee the
uniqueness of the system solution, f(x,u) is assumed to be
locally Lipschitz in its arguments over the domain of interest
and zero in a compact positively invariant set Σ [7].

It is assumed that if all the system states are measurable,
the following state feedback controller is capable of making
the closed-loop system uniformly asymptotically stable con-
cerning set Σ [7],

u = g(x, θ)

θ̇ = h(x, θ)
(2)

where g(⋅) and h(⋅) are locally Lipschitz in their arguments
over the domain of interest and globally bounded functions
of x. Furthermore, let us denote an open connected subset
of the corresponding region of attraction by S. Note that the
considered class of control signal (2) covers a wide range of
control inputs. Such a control input can be designed using
feedback linearizion approach, sliding mode scheme, adaptive
techniques (conventional or intelligent), etc. Thus, the analysis
provided in the subsequent sections are valid regardless of the
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way that the controller has been designed. In other words,
one can design a suitable state feedback controller separately
and then replace the system states by the MHGO-based state
estimations.

The understudy control problem is more general than the
stabilization of an equilibrium point. In other words, lots of
control problems (e.g., regulation, tracking, etc.) can be treated
by properly defining the set Σ. For instance, the stabilization
problem of the origin is a special case of the problem above
in which Σ = {0}.

Since the assumption of availability of all system states is
not always feasible in practice, the aforementioned controller
cannot be applied to all real-life processes. To relax this
assumption, it is required to estimate the system states suitably
and feed them back to the controller. However, in this case, the
stability of the closed-loop system should be investigated care-
fully. In the subsequent sections, the assumption of availability
of all system states is removed by utilizing an observer-based
controller, and the robustness of the closed-loop system when
the system output is contaminated by measurement noise is
analyzed.

III. OBSERVATION STRUCTURE

This section presents the structures of conventional HGO
and MHGO. In addition, a brief comparison between these
two state estimation strategies are provided to elucidate more
on the advantages obtained from combining observations col-
lected from different sources/observers.

A. High-gain Observer

The dynamical equation of a single HGO is as follows:

˙̂x = Ax̂ +Bfo(x̂, u) +H(y −Cx̂) (3)

where H = [κ1/ε κ2/ε
2 ⋯ κn/ε

n]T and ε ∈ (0,1]. The
function fo(x,u) is a nominal model of f(x,u) which is
locally Lipschitz in its arguments, globally bounded in x̂, and
zero in Σ. In addition, κi are chosen such that the real parts
of all roots of polynomial P (s) = sn+κ1s

n−1+⋯+κn−1s+κn
lie in the open left-half plane. Such a selection ensures that
A −HC is a Hurwitz matrix.

It is well-known that the single HGO (3) can estimate
system state vector accurately by selecting sufficiently large
gains. However, the classic HGO (3) suffers from two major
issues:

(i) undesirable peaks exist in the transient response of the
estimated states, and if they are fed into the controller,
they may push the system into instability

(ii) when the measurement is noisy, one cannot choose
the gain in observer (3) arbitrarily large. More clearly,
selecting a large gain may yield a large steady state error.

In the following subsection, several HGOs with suitable initial
conditions are run, and the collected state estimations are
employed to estimate the system state vector in a manner such
that the aforementioned issues are mitigated.

B. Multiple High-gain Observers
In this section, the MHGO structure and its capabilities in

providing reliable state estimations are presented. Since this
structure utilizes some properties of convex sets, it is useful
to present the following lemma.

Lemma 1: [31] Let K be a convex subset of a linear space.
Then, any element of the convex hull K of {q1,⋯, qN}, i.e.,
q ∈ K, can be expressed as q = ∑Ni=1 βiqi where βi ∈ [0,1] are
constant terms and ∑Ni=1 βi = 1.

In order to provide state estimations using multiple HGOs,
inspired by [25], the dynamical equation for MHGO strategy
is considered as follows:

˙̂xi(t) = Ax̂i(t) +H(y(t) −Cx̂i(t))

x̂o(t) =
N

∑
i=1

β̂i(t)x̂i(t)
(4)

where i = 1,⋯,N , x̂i is the state estimation obtained from
the ith observer. Besides, β̂i represent estimations of constant
parameters βi, and they are calculated such that the equality
∑
N
i=1 β̂i(t) = 1 holds. Note that to be able to use Lemma 1, the

number of observers should be larger than the number of state
variables, i.e., N ≥ n+1. Moreover, one can see that in contrast
to multiple models/observers with switching, the MHGO does
not need a large number of models and simultaneously utilize
all available information. Regarding the parameters βi, the
following lemma is considered.

Lemma 2: Consider the state estimation (4). Let the initial
conditions x̂i(0) be chosen such that x(0) lies in their convex
hull. Then, there exist some positive constant terms f̄0, ν̄, βi
with ∑Ni=1 βi = 1 such that the state estimation error e(t) =

x(t) −∑
N
i=1 βix̂i(t) depends on εf̄0 and ν̄/εn−1.

Proof: In order to prove the preceding lemma, let us use
the facts that βi are constant terms and ∑Ni=1 βi = 1, and derive
the dynamical equation of error e(t) as follows:

ė = ẋ −
N

∑
i=1

βi ˙̂xi =
N

∑
i=1

βi (ẋ − ˙̂xi)

By substituting (1) and (4) into the preceding equation, one
can get

ė = (A −HC)e +Bf(x,u) −Hν(t) (5)

Now, let us define a scaled version of the estimation error as
η =D(ε)e, where the matrix D(ε) is defined as follows:

D(ε) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0
0 ε ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 εn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

Taking the time derivative of the scaled error η and using (5),
one can get

η̇ =
1

ε
Aoη +

1

ε
Hoν(t) + ε

n−1Bf(x,u) (7)

where Ho = −εDH = [−κ1 −κ2 ⋯ −κn]
T

and

Ao = εD (A −HC)D−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−κ1 1 0 ⋯ 0
−κ2 0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 1
−κn 0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Consider the Lyapunov function candidate V0(η) = η
TP0η

for system (7), where P0 = PT0 is a positive definite matrix
whose the largest and the smallest eigenvalues are denoted by
λmax and λmin, respectively. It is assumed that P0 satisfies the
Lyapunov’s equation, i.e.,

ATo P0 + P0Ao = −I (8)

Taking the time derivative of V0(η) and utilizing (7) and (8),
yield

V̇0(η) = −
1

ε
∥η∥2

+
2

ε
ηTP0Hoν(t)

+ 2εn−1ηTP0Bf(x,u)
(9)

Due to the boundedness of function f(x,u) in the domain
of interest, one has ∥f(x,u)∥ ≤ f̄0. Using this fact and
performing some basic mathematical manipulations on (9), one
can get

V̇0(η) ≤ −
1

2ε
∥η∥2

−
∥η∥

2ε
(∥η∥ − 4εn∥P0∥f̄0 − 4∥P0Ho∥ν̄)

This equation implies that V̇0(η) ≤ −
1
2ε

∥η∥2 as long as ∥η∥ ≥
4εn∥P0∥f̄0 + 4∥P0Ho∥ν̄. As a result, the set

S0 = {η ∈ Rn∣ V0(η) ≤ (4εn∥P0∥f̄0 + 4∥P0Ho∥ν̄)
2
λmax}

is an invariant set for the system.
Using the fact that the initial conditions of observers, x̂i(0),

are selected such that x(0) lies in their convex hull, there
exist constant terms βi such that x(0) = ∑

N
i=1 βix̂i(0) or

equivalently e(0) = 0 (see Lemma 1), and in turn, η(0) = 0.
Therefore, the estimation error is initiated from inside of the
invariant set S0; furthermore, we have λmin∥η∥

2 ≤ V0(η) ≤

λmax∥η∥
2. According to these facts, it is valid to say that

∥η∥ ≤
√

λmax

λmin
(4εn∥P0∥f̄0 + 4∥P0Ho∥ν̄). By using the preced-

ing inequality and ∥e∥ = ∥D−1η∥ ≤ 1
εn−1

∥η∥, one can show
that

∥e∥ ≤

√
λmax

λmin

4εn∥P0∥f̄0 + 4∥P0Ho∥ν̄

εn−1
(10)

Consequently, there exists a bounded term δ(t, εf̄0, ν̄/ε
n−1)

such that e(t) = δ(t, εf̄0, ν̄/ε
n−1). It is worth mentioning that

when there is no measurement noise, ν̄ = 0, the upper bound
on the norm of observation error becomes

√
λmax

λmin
4ε∥P0∥f̄0.

Therefore, in this case, the ultimate estimation error bound
tends to zero as ε goes to zero. ∎

It is well-known that the stability and performance of
observer-based control strategies greatly depend on the conver-
gence rate of the observer. More clearly, as will be shown later,
if the state estimation error enters an invariant set fast enough,
the closed loop system is stable. As it was shown in Lemma 2,
we have e(t) = x(t) −∑Ni=1 βix̂i(t) = δ(t, εf̄0, ν̄/ε

n−1); hence
the following equality holds.

x(t) = ∑
N

i=1
βix̂i(t) + δ(t, εf̄0, ν̄/ε

n−1
) (11)

Now, let us define eo = x− x̂o and substitute (11) and (4) into
it. Thus, we get

eo(t) = ∑
N

i=1
βix̂i −∑

N

i=1
β̂ix̂i + δ(t, εf̄0, ν̄/ε

n−1
)

By adding x = ∑
N
i=1 β̂ix to and subtracting x = ∑

N
i=1 βix

from the right-hand side of the preceding equality (∑Ni=1 β̂i =

∑
N
i=1 βi = 1), it is valid to conclude that

eo(t) = ∑
N

i=1
β̃iei + δ(t, εf̄0, ν̄/ε

n−1
) (12)

where β̃ = β̂i − βi and ei = x − x̂i. It is clear that since
the final estimation error eo(t) is the multiplication of two
estimation errors β̃i and ei, this observation error is capable
of entering the invariant set very fast. In other words, this type
of problem re-parameterization (converting the state estimation
problem into estimation of constant parameters βi) expedites
the convergence process. To obtain estimations of βi, the
following RLS algorithm is employed,

˙̄̂
β = −PETCT (ỹN +CE ˆ̄β), ˆ̄β(0) = ˆ̄β0

Ṗ = −PETCTCEP, P (0) = γI
(13)

where ˆ̄β = [β̂1 β̂2 ⋯ β̂N−1]
T

, β̂N = 1 − ∑
N−1
i=1 β̂i, ỹN =

y − Cx̂N , I ∈ R(N−1)×(N−1) is the identity matrix, and γ is
a positive constant. Furthermore, the ith column of E(t) is
defined as x̂N(t) − x̂i(t).

Remark 1: It was shown that the convergence speed of
the proposed observation scheme (4) and (13) depends on the
convergence rate of both x̂i and β̂i (see (12)). On the other
hand, it is well-known that the convergence rates of individual
observers (4), x̂i, and the RLS algorithm (13), β̂i, depend
on ε and γ, respectively. Thus, the need for considering a
very small ε in conventional HGOs can be relaxed. To get the
desired state estimation performance, the parameter ε needs
to be selected large for making the ultimate estimation error
δ(⋅) small as well as avoiding the peaking, and the parameter
γ should appropriately be chosen for improving the transient
response and expediting the convergence process. In regard to
the initial conditions β̂i(0), if there is no a priori knowledge
about how close the initial condition of the ith observer (x̂i(0))
is to the system states, one can set the initial weights equally,
i.e., β̂i(0) = 1

N
. In the case that a prior knowledge exists, then

we will give a higher initial weight to the closest observer.

IV. ROBUSTNESS ANALYSIS OF MHGO IN FEEDBACK
CONTROL

It is well-known that performance of observer-based con-
trollers are dictated by the utilized state estimation. Due to the
advantages mentioned for the state estimation obtained from
MHGO, such a estimation is used for control purposes in this
section, and the robustness and stability analyses of the closed-
loop system are fully discussed. In this case, one can feed the
estimated system states x̂o into the control signal (2), and get
the output feedback controller as

u = g(x̂o, θ)

θ̇ = h(x̂o, θ)
(14)

In the sequel, it will be shown that the MHGO-based control
signal (14) is capable of recovering the performance of the
state feedback controller.
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To analyze the performance of the closed-loop system, first
let us subtract (1) from (4) and get the error dynamics of each
observer as follows:

ėi(t) = (A −HC)ei(t) +Bf(x,u) −Hν(t) (15)

Now, define a scaled version of the estimation error ηi =

D(ε) (x − x̂i), where D(ε) is as presented in (6). Taking the
time derivative of the scaled error ηi and utilizing (15), result
in

εη̇i(t) = Aoηi(t) + ε
nBf(x,u) +Hoν(t) (16)

By using the fact that β̂N = 1 − ∑
N−1
i=1 β̂i and the definition

of x̂o (4), one can write the scaled state estimation error ηo =
D(ε) (x − x̂o) as follows:

ηo =D(ε)(
N−1

∑
i=1

β̂i (x − x̂i) + (1 −
N−1

∑
i=1

β̂i)(x − x̂N))

= Eo
ˆ̄β + ηN

(17)

where the ith column of Eo is ηi−ηN . Besides, by employing
(16), it is straightforward to show that

εĖo = AoEo (18)

To get the dynamical equation of ηo, it is required to take
the time derivative of (17), and employ (13), (16), (18). Thus,
one can get

η̇o =
1

ε
Aoηo −EoPE

TCTC (eN +E ˆ̄β)

−EoPE
TCT ν(t) + εn−1Bf(x,u) +

1

ε
Hoν(t)

By employing the facts that D−1ηo = eo = eN +E ˆ̄β, CD−1 =

C, and E = D−1Eo, one can rewrite the preceding equation
as follows:

η̇o =
1

ε
Aoηo −EoPE

T
o C

TCηo

+ (−EoPE
T
o C

T
+

1

ε
Ho)ν(t) + ε

n−1Bf(x,u)
(19)

Now, let us employ (1) and (19) and write the system dynamics
under the output feedback controller (14) as follows:

ẋ = Ax +Bf (x, g(x −D−1ηo, θ)) (20)

εη̇o = Aoηo − εEoPE
T
o C

TCηo (21)

+ (−εEoPE
T
o C

T
+Ho)ν(t) + ε

nBf (x, g(x −D−1ηo, θ))

The obtained dynamical equations represent a system in
the standard singularity perturbed form. In order to analyze
the closed-loop system behavior, one needs to consider the
following facts and lemma.

Fact 1: Because P (t) is a positive definite matrix and
Ṗ (t) ≤ 0 (see (13)), it is valid to conclude that P (t) is
bounded.

Fact 2: Since the matrix Ao is Hurwitz, the dynamical
equation (18) results in a bounded term Eo(t). In other words,
there exist positive constants l1 and λ such that ∥Eo(t)∥ =

∥ exp( 1
ε
Aot)Eo(0)∥ ≤ l1 exp(− 1

ε
λt).

Lemma 3: Consider the nonlinear function h(ε, ν̄) =
4εnf̄+2(a1ε+a2)ν̄

εn−1
with positive constants f̄ , a1, and a2. Then,

there exist ε∗ ∈ (0,1], ε∗1 < ε
∗ and ε∗2 > ε

∗ such that for every
ν̄ ∈ [0, ν̄∗(ε∗)] and a given constant term h̄, the inequality
h(ε, ν̄) ≤ h̄ holds for every ε ∈ [ε∗1, ε

∗
2].

Proof: To prove the lemma, we will first show that h(ε, ν̄)
has only one minimum point at ε∗. Then, this fact will be
utilized to prove the lemma.

To prove the first part, it will be first shown that ∂h
∂ε

= 0
has at most two roots. Then, all possible scenarios will be
discussed, and it will be concluded that h(ε) has exactly one
minimum point. In this regard, the partial derivative of h(ε)
with respect to ε can be taken as follows:

∂h

∂ε
=

4f̄ εn − 2(n − 2)a1ν̄ε − 2(n − 1)a2ν̄

εn
(22)

To find extrema of h(ε), we set ∂h
∂ε

= 0. This is equivalent to
h1(ε) = 4f̄ εn − 2(n − 2)a1ν̄ε − 2(n − 1)a2ν̄ = 0 since ε ≠ 0.
In order to show that the number of roots of h1(ε) = 0 is at
most two, ∂h1

∂ε
will be checked. By performing some basic

manipulations, one can get ∂h1

∂ε
= 4nf̄εn−1 − 2(n − 2)a1ν̄ = 0,

which has only one solution at ε = (
2(n−2)a1ν̄

4nf̄
)

1
n−1 . Hence,

the sign of ∂h1

∂ε
changes one time (from a negative value to a

positive value), and in turn, it is valid to conclude that h1(ε) =
∂h
∂ε

= 0 has at most two solutions.
Now, let us consider the following three possible cases: (i)

∂h
∂ε

= 0 has no solution (ii) ∂h
∂ε

= 0 has one solution (iii) ∂h
∂ε

= 0
has two distinct solutions. Let us check some properties of
function h(ε) and show that case (i) results in a contradiction.
Since function h(ε) has a negative slope for small values of ε
(see (22)), limε→0+

∂h
∂ε

< 0, this function is indeed decreasing
at the beginning. On the other hand, we have limε→0+ h(ε) =
+∞ and limε→+∞ h(ε) = +∞. Thus, the slope of this function
should change its sign at some points, which contradicts with
the assumption of having no solution for ∂h

∂ε
= 0, i.e., case

(i). For case (ii), let us assume that ε1 denotes the root of
∂h
∂ε

= 0. Since limε→0+
∂h
∂ε

< 0 and both limε→0+ h(ε) and
limε→+∞ h(ε) tend to +∞, ε1 is the minimum point of function
h(ε). On the other hand, we have ε ∈ (0,1]; thus, in this case,
the minimum occurs at ε∗ = min{ε1,1}. For case (iii), let us
denote the two distinct roots of ∂h

∂ε
= 0 by ε2 and ε3. Using

a similar discussion presented for cases (i) and (ii), one can
conclude that at least one of these distinct roots should be
the minimum point of function h(ε), e.g., ε2. For the other
root, i.e., ε3, since we assumed that ∂h

∂ε
∣
ε=ε3

= 0, this point
can be a minimum or a maximum or an inflection point of
function h(ε). Because no function can have two consecutive
minimum points (without having any maximum point in the
between of them), ε3 cannot be a minimum point. It cannot
be a maximum point either since this assumption contradicts
with the fact that limε→+∞ h(ε) = +∞. On the other hand,
ε3 is not an inflection point of function h(ε) since ∂2h

∂ε2
=

2(n−2)(n−1)a1ν̄ε+2(n−1)na2ν̄
εn+1

≠ 0 for all bounded values of ε. In
other words, case (iii) does not occur.

So far, it was proven that the function h(ε) has exactly one
minimum at ε∗. To find the largest possible (less conservative)
upper bound of ν̄, for a given constant h̄, we need to check
h(ε∗, ν̄) ≤ h̄. Toward this end, by performing some basic
manipulations on 4ε∗nf̄+2(a1ε∗+a2)ν̄

ε∗n−1
≤ h̄, one can conclude
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that the upper bound of noise, ν̄, should be less than or equal
to ν̄∗ =

ε∗n−1h̄−4ε∗nf̄
2(a1ε∗+a2) . On the other hand, it is clear that if

ν̄ ∈ [0, ν̄∗], then the equation h(ε, ν) = h̄ has two solutions at
ε∗1 < ε∗ and ε∗2 > ε∗. Hence, the inequality h(ε, ν) ≤ h̄ holds
for every ε ∈ [ε∗1, ε

∗
2]. ∎

The following theorem summarizes performance recovery
of the singularly perturbed closed-loop system in the presence
of measurement noise (refer to (20) and (21)).

Theorem 1: Let us consider the dynamical system (1) with
the control input (2). If the system states are estimated using
the observer (4) with the adaptive law (13), then for any
compact set S1 ⊆ S (where S is an open connected subset of
the region of attraction) and any compact set S2 ⊆ Rn, there
exist constants ν̄∗, ε∗1 and ε∗2 such that for every ∥ν(t)∥ ≤ ν̄∗,
ε ∈ [ε∗1, ε

∗
2], the solution (x, x̂o), starting in S1×S2, is bounded

for all t. Furthermore, the adaptive parameters ˆ̄β(t) and the
individual observers estimations x̂i(t) are bounded as well.

Proof: The proof of theorem is divided into two steps. First,
we will guarantee boundedness of the state estimation error
x − x̂o and the system state x. Then, this information will be
used in the second step to prove that all other signals in the
closed-loop system are bounded as well.

Step 1 (boundedness of x− x̂o and x): To prove the first
step, a positive invariant set will be derived for the system
dynamics which will guarantee boundedness of x− x̂o and x.
This step is composed of two sub-steps:

● In sub-step 1, it is guaranteed that x− x̂o ∈ L∞ assuming
that x ∈ Sc (Sc will be defined later).

● In sub-step 2, we will ensure that when x(t) starts from
inside of the set S1 ⊆ Sc, ηo(t) will enter the set S3 (S3

will be defined later) before that x(t) leaves Sc; then it
will be shown that Sc ×S3 is a positive invariant set, and
in turn, x(t) and ηo(t) will remain inside the set Sc ×S3

thereafter.
Step 1.1: Let us consider the Lyapunov function candidate

V1(ηo) = η
T
o P0ηo for system (21). Taking the time derivative

of this function and substituting (21) and (8) into it, yield

V̇1(ηo) = −
1

ε
ηTo ηo − 2ηTo P0EoPE

T
o C

TCηo

+ 2ηTo P0 (−EoPE
T
o C

T
+

1

ε
Ho)ν(t)

+ 2εn−1ηTo P0Bf(x,u)

(23)

Due to the globally boundedness of controller u in its ar-
guments and locally Lipschitz property of f(x,u), one has
∥f(x,u)∥ ≤ f̄0 over a domain of interest Sc ⊆ S (Sc will
be defined later). By using the preceding inequality and
performing some basic mathematical manipulations on (23),
one can get

V̇1(ηo) ≤ −
1

ε
∥ηo∥

2
− 2ηTo P0EoPE

T
o C

TCηo

+ (a1 +
1

ε
a2) ∥ηo∥ν̄ + 2εn−1

∥ηo∥f̄

where 2∥P0EoPE
T
o C

T ∥ ≤ a1, a2 = 2∥P0Ho∥, and f̄ = ∥P0∥f̄0.
With regard to Facts 1 and 2, one can conclude that constant
a1 is a bounded term.

Now let us define the compact set

S3 = {ηo ∈ Rn∣ V1(ηo) ≤ (2 (εa1 + a2) ν̄ + 4εnf̄)
2
λmax}

(24)
Outside of the above set, one has V̇1(ηo) ≤ − 1

2ε
∥ηo∥

2 −

2ηTo P0EoPE
T
o C

TCηo. By using Fact 2 and performing some
basic manipulations on the preceding inequality, one can get

V̇1(ηo) ≤ −
1

2ε
∥ηo∥

2
+ l2 exp(−

2

ε
λt)∥ηo∥

2 (25)

where 2l21∥P0∥∥P ∥∥CTC∥ ≤ l2. Note that by utilizing Facts
1 and 2, it is straightforward to conclude that the positive
constant l2 is bounded. By using inequality λmin∥ηo∥

2 ≤

V1(ηo) ≤ λmax∥ηo∥
2 and (25), one has

V̇1(ηo) ≤ (−
1

2ελmax
+

l2
λmin

exp(−
2

ε
λt))V1(ηo) (26)

where λmax and λmin denote the largest and smallest eigen-
values of the matrix P0. Taking integral over (26), results
in

V1(t) ≤ V1(0) exp(−
t

2ελmax
) exp(

l2ε

2λλmin
(1 − exp(−

2

ε
λt)))

Since there exists a positive constant l3 such that
exp ( l2ε

2λλmin
(1 − exp(− 2

ε
λt))) ≤ l3, one can get

V1(t) ≤ V1(0)l3 exp(−
t

2ελmax
) (27)

Therefore, if ηo is outside of the compact set S3 (24), there
exists a finite time T (ε) after which ηo will enter that set. To
obtain a closed form for T (ε), the preceding inequality can
be utilized to get

T (ε) = 4ελmax ln
⎛

⎝

√
V1(0)l3

4εnf̄
√
λmax

⎞

⎠
(28)

On the other hand, as long as the scaled state estimation
error is inside S3, ∥x− x̂o∥ = ∥D−1ηo∥ ≤

1
εn−1

∥ηo∥ satisfies the
following inequality

∥x − x̂o∥ ≤

√
λmax

λmin
h(ε, ν̄) (29)

where h(ε, ν̄) = 4εnf̄+2(a1ε+a2)ν̄
εn−1

. Hence, we showed that ηo(t)
is bounded; however, the provided analyses were based on the
assumption that x(t) ∈ Sc. In the sequel, the analysis of this
part is divided into two phases. First, we will ensure that when
x(t) starts from inside of the set S1 ⊆ Sc, ηo(t) will enter the
set S3 before that x(t) leaves Sc, i.e., the provided analysis
for ηo(t) is valid during this time interval. Second, it will be
shown that Sc×S3 is a positive invariant set, and in turn, x(t)
and ηo(t) will remain inside the set Sc × S3 thereafter.

Step 1.2: Since the system dynamics are in the form of
standard singularly perturbed systems [7], let us substitute ηo =
0 into (20) and get

ẋ = Ax +Bf(x, g(x, θ)) (30)

It is obvious that the reduced system is identical to the system
under the state feedback controller (2), and in turn, uniformly
asymptotically stable with respect to the positively invariant set
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Σ. According Lyapunov’s converse Theorem [7], there exists
a Lyapanuv’s function V2(x) and positive definite functions
U1(x), U2(x), and U3(x) for system (30) such that

V2(x) = 0 ⇐⇒ x ∈ Σ

U1(x) ≤ V2(x) ≤ U2(x)

V̇2(x) ≤ −U3(x)

lim
xÐ→∂S

U1(x) = ∞

(31)

where S is an open connected subset of the region of at-
traction; moreover there exists c ≥ maxx∈S1 V2(x) such that
S1 ⊆ Sc = {x ∈ Rn∣ V2(x) ≤ c} ⊆ S.

Since the nonlinear function f(x,u) is locally Lipschitz
function and u = g(x −D−1ηo) is globally bounded over the
set of interest Sc, one has

∥ẋ∥ = ∥Ax +Bf(x, g(⋅))∥ ≤ a5

where a5 > 0 is a constant term. Taking integral over both sides
of the preceding equation and using the fact that ∥ ∫

t
0 ẋdτ∥ ≤

∫
t

0 ∥ẋ∥dτ , yields ∥x(t) − x(0)∥ ≤ a5t. Moreover, we have
x(0) ∈ S1 ⊆ Sc; thus the inequality ∥x(t)−x(0)∥ ≤ a5t implies
that there exists T1 such that x(t) is inside the set Sc as long
as t ≤ T1. On the other hand, since T (ε) tends to zero as
ε→ 0 (refer to (28)), there exists a constant term ε∗3 such that
for ε ≤ ε∗3 we have T (ε) ≤ T1. In other words, the scaled state
estimation error ηo(t) enters the set S3 fast enough before that
the system states x(t) leave the set Sc.

In the next step, it will be shown that if (x, ηo) lies inside
of the set Sc ×S3, this pair will always remain there. In other
words, Sc × S3 is a positive invariant set. In this regard, by
using the Lyapunov’s function V2(x) for closed-loop system
(20), one can get

V̇2(x) ≤ −U3(x) +
∂V2

∂x
B (f(x,D−1ηo) − f(x))

Due to the fact that ∥∂V2

∂x
∥ ≤ a3 and the Lipschitz property

of function f(⋅) over the domain of interest, it is valid to
conclude that V̇2(x) ≤ −U3(x) + a3a4∥D

−1ηo∥ where a4 ≥ 0
denotes the Lipschitz constant. Inside of the set Sc × S3 the
presented upper bound in (29) is valid; thus by utilizing this
upper bound and ∥D−1ηo∥ = ∥x−x̂o∥, the preceding inequality
can be rewritten as follows:

V̇2(x) ≤ −U3(x) +

√
λmax

λmin
a3a4h(ε, ν̄)

By setting h̄ =
√

λmin

λmax

1
a3a4

minx∈∂Sc U3(x) in Lemma 3, we
get V̇2(x) ≤ 0 for ν̄ ∈ [0, ν̄∗1 ] and ε ∈ [ε∗4, ε

∗
5]. On the other

hand, ε∗3 (obtained earlier for ensuring T (ε) ≤ T1 for all ε ≤
ε∗3) gives us an upper bound for the measurement noise, i.e.,
ν̄∗2 =

ε∗n−13 h̄−4ε∗n3 f̄

2(a1ε∗3+a2)
. Thus, the parameters ν̄∗, ε∗1 , and ε∗2 (used

in the theorem) can be defined as ν̄∗ = min{ν̄∗1 , ν̄
∗
2}, ε∗1 = ε∗4 ,

and ε∗2 = min{ε∗3, ε
∗
5}. Note that we showed that V̇1(ηo) ≤ 0

and V̇2(x) ≤ 0 for all (x(t), ηo(t)) ∈ Sc × S3. Hence, the set
Sc × S3 is a positive invariant set.

In summary, we proved that if x(0) ∈ S1 ⊆ Sc and ηo is
outside of the set S3, then x(t) and ηo(t) will enter the set

Sc ×S3 after T (ε) units of time and will remain there for t >
T (ε). This means that the solution (x(t), x̂o(t)) is bounded.

Step 2 (boundedness of x̂i and β̂i): To complete the proof
and ensure boundedness of the other signals of the closed-loop
system, it is needed to guarantee that x̂i, ˆ̄β ∈ L∞. Toward this
end, first let us show that each observer yields a bounded state
estimation vector, i.e., x̂i ∈ L∞. In this regard, one can rewrite
dynamical equation (4) as

˙̂xi(t) = (A −HC)x̂i(t) +H (Cx(t) + ν(t)) (32)

It was proven earlier that x(t) belongs to L∞; moreover
ν(t) is bounded as well. Therefore, equation (32) represents a
linear system with Hurwitz matrix A−HC and bounded input
Cx(t) + ν(t), and in turn, x̂i ∈ L∞.

To prove that ˆ̄β ∈ L∞, let us take integrate over (13) and get
ˆ̄β(t) − ˆ̄β(0) = −∫

t
0 PE

TCT (ỹN +CE ˆ̄β)dτ , and in turn, one
has ∥ ˆ̄β(t)∥ ≤ ∥ ˆ̄β(0)∥ + ∥ ∫

t
0 PE

TCT (ỹN + CE ˆ̄β)dτ∥. Since
C (x̃N +E ˆ̄β) + ν(t) = Cx̃o + ν(t), the preceding inequality
can be rewritten as

∥ ˆ̄β(t)∥ ≤ ∥ ˆ̄β(0)∥ + ∫
t

0
∥PETCT (Cx̃o + ν) ∥dτ (33)

As it was shown earlier x̃o = D−1ηo ∈ L∞; thus Cx̃o + ν
belongs to L∞. Using the preceding equality, Facts 1 and 2,
and (33), one has ∥ ˆ̄β(t)∥ ≤ ∥ ˆ̄β(0)∥+a6 ∫

t
0 exp(− 1

ε
λτ)dτ , with

l1∥P ∥∥Cx̃o + ν∥ ≤ a6 where a6 is a bounded constant. Hence,
one has ∥ ˆ̄β(t)∥ ≤ ∥ ˆ̄β(0)∥+ a6ε

λ
(1 − exp(−λ

ε
t)), and it is valid

to conclude that ˆ̄β ∈ L∞. ∎

V. SIMULATION RESULTS

In this section, two simulation results are presented to shed
some light on the presented theoretical discussions. In the
first simulation, a numerical example is considered and the
obtained results for MHGO-based controller are compared
with the conventional HGO-based approach as well as HGO
with switching gain strategy [17]. In the second example,
simulations are carried out on a mechanical system, and the
superiority of the MHGO-based approach over conventional
HGO-based schemes and multi-observer-based approaches is
shown.

A. Example 1: Underwater Vehicle

In this subsection, a simplified model of underwater vehicle
in yaw with dynamical equation of

ψ̈ + aψ̇∣ψ̇∣ = u

is selected for simulation purposes, where ψ denotes the
heading angle and a is a positive constant. Let us assume
that only the heading angle is measured and that measurement
is contaminated by noise ν(t), i.e., y = ψ + ν(t). In this
simulation, a = 1 and the measurement noise, generated by
Matlab uniform random number block with sampling time
0.0001, is in the interval [−0.01,0.01].

The control objective is to steer the heading angle to follow
the sinusoidal wave yd = 5 + sin(2t). It is obvious that the
state feedback controller u = aψ̇∣ψ̇∣+ ÿd+4(ψ̇− ẏd)+4(ψ−yd)
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Fig. 1: Evolution of ψ(t) using state feedback, HGO-based,
Switching HGO-based, and MHGO-based controllers.
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Fig. 2: Evolution of ψ̇(t) using state feedback, HGO-based,
Switching HGO-based, and MHGO-based controllers.

can force the heading angle to track yd asymptotically. Since
ψ̇ is not measurable, it should be reconstructed appropriately
and fed into the above controller. As stated in the previous
section, MHGOs are capable of providing such an estimation;
hence they are used in this regard. For comparison purposes,
simulations are also performed by utilizing the conventional
HGO and the HGO with switching gain [17]. The basic idea
behind the latter observation scheme, HGO with switching
gain, is to switch from a small gain to a larger gain. More
clearly, a small value for ε is employed in the beginning to get
a fast response, then it is switched to a larger value to avoid
large steady observation errors caused by the measurement
noise [17].

The design parameters of the conventional HGO are selected
as ε = 0.15, κ1 = 2, κ2 = 1. Furthermore, the design parameters
of the switching HGO change from ε = 10−3, κ1 = 71, κ2 =

70 to ε = 0.15, κ1 = 2, κ2 = 1. Besides, it is assumed that
the implemented control effort by the actuator is restricted
by amplitude of 500. For the MHGO, to be able to run the
adaptive laws (13), initial conditions of the RLS algorithm
are selected as follows: γ = 103, β̂1(0) = β̂2(0) = 0, and in
turn β̂3(0) = 1 − ∑

2
i=1 β̂i(0) = 1. In addition, parameters κi

and ε are set equal to the corresponding parameters of the
conventional HGO. It is clear that the three approaches will
eventually have ε = 0.15, and in turn, all of them will affect the
measurement noise with the same ε, which allows us to make
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Fig. 3: State estimation errors of ψ using conventional HGO,
Switching HGO and MHGO.
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Fig. 4: State estimation errors of ψ̇ using conventional HGO,
Switching HGO and MHGO.

an accurate comparison. Moreover, the initial conditions of
the multiple observers, employed in MHGO, are required to be
selected such that the initial system states, i.e., x(0) = [0 0]T

lie in their convex hull. Toward this end, three observers are
initiated from x̂1(0) = [+5 +5]T , x̂2(0) = [−5 +5]T , and
x̂3(0) = [+5 −5]T ; thus x̂o starts from ∑3

i=1 β̂i(0)x̂i(0) =

[+5 −5]T . To make the simulation results more comparable,
the initial condition of the conventional HGO and HGO with
switching are set equal to x̂o(0) = [+5 −5]T as well.

The evolution of system states are depicted in Figs. 1
and 2. From these two figures, it is clear that the MHGO-
based controller recovers performance of the state feedback
controller faster than the two others. Also, due to the existence
of the measurement noise on the system output y(t), the
controllers based on these observation strategies result in a
bounded error. The state estimation process is also presented in
Figs. 3 and 4. The obtained observation results are also in com-
mensurate with the provided discussions. These figures show
that because a small value is considered for ε in the transient
phase in switching gain approach, this scheme reconstructs
system states faster than the conventional HGO. Nonetheless,
as it is well-known in the control literature, such a selection
yields a large overshoot in the beginning of the estimation (see
Fig. 5), which is not preferable in practice. The MHGO, on
the other hand, provides satisfactory performance in terms of
the convergence rate and peaking avoidance. Because, during
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Fig. 5: State estimation errors of ψ̇ during the transient phase
using conventional HGO, Switching HGO and MHGO.

the transient phase, the adaptive terms β̂i, presented for re-
parameterizing the observation problem and combining the
estimations of each observer, assist the observation structure
to result in better estimations (see Remark 1). Note that in the
long run β̂i converge to their final values and since∑3

i=1 β̂i = 1,
MHGO behaves similarly to a single HGO.

B. Example 2: Connected Inverted Pendulums on Carts

Consider two inverted pendulums mounted on two carts and
connected by a spring, as shown in Fig. 6. The governing dy-
namical equation of this mechanical system can be expressed
as [32],

ẋ11 = x12

ẋ12 = F11(x) + F12u1

ẋ21 = x22

ẋ22 = F21(x) + F22u2

y = [x11 x21]
T
+ ν(t)

(34)

where xk1 and xk2 (k = 1,2) represent the vertical angle
of the kth pendulum θk and its angular velocity θ̇k, re-
spectively, x = [x11 x12 x21 x22]

T is the system state
vector, ν(t) = [ν1(t) ν2(t)]

T denotes measurement noise,
Fk1(x) = (

g
cl
− ka a−cl

cml2
)xk1−

m
M

sin(xk1)x
2
k2+ka

a−cl
cml2

xj1 and
Fk2(x) =

1
cml2

with k, j = 1,2 and k ≠ j. In this simulation,
the following values are considered for system parameters:
mass of pendulum m = 1 kg, mass of cart M = 5 kg, constant
term c = m

m+M , distance of the cart from the spring along with
the bar a = 0.2 m, length of pendulum l = 1 m, spring constant
k = 1 N/m, and gravity acceleration g = 9.8 m/s2.

In order to make the closed-loop system asymptotically
stable and force its output vector to track the desired trajec-
tory yd = [y1d y2d]

T
= [0.3 sin(t) 0.3 cos(t)]

T
, the state

feedback controller

uk =
1

Fk2
(−Fk1 + ÿkd − 7(xk2 − ẏkd) − 12(xk1 − ykd))

which is saturated outside [−50 +50], is considered. In the
sequel, the state reconstruction process is performed using
three different approaches, namely a single HGO, multi-
observer, and MHGO, and capabilities of these observation

Fig. 6: A schematic of the system considered in example 2
[32].

strategies in recovering performance of the state feedback
controller are compared.

Note that (34) is a multi-input multi-output (MIMO) system,
hence, it is required to explain how the MHGO scheme can
be employed for estimating the system states. Toward this
end, by using the fact that (34) represents a special class of
MIMO systems with two subsystems in normal form, one can
employ two sets of MHGO for state estimation of the overall
system. One MHGO uses y1 = x11 + ν1(t) to estimate x11

and x12, and the other one employs y2 = x21 + ν2(t) for
estimating x21 and x22. Each set of MHGO has Nk HGOs and
the parameters estimations (β̂k1, β̂k2,⋯, β̂kNk

) obtained from
the RLS algorithm (13). It is clear that the aforementioned
approach can be easily extended to a class of MIMO nonlinear
systems consisted of more than two (k > 2) subsystems in
normal form.

To carry out the simulations, the initial conditions of the
system are considered as x(0) = [1 0 1 0]

T
, and the

measurement noise vector ν(t) is generated by two uniform
random number blocks of Matlab Simulink with the values
restricted to the interval [−0.02 +0.02] and sampling time
0.0001. Note that from this point forward, the superscript
k = 1,2 is used to denote the state estimation of subsystem k.
In order to investigate the performance of conventional HGO-
based controller, the state variables of each subsystem are
estimated using a single HGO. For that, the design parameters
and initial conditions of the kth observers are selected as:
κk1 = 2, κk2 = 1, εk = 0.05, x̂k(0) = [+3 −3]T . In multi-
observer approach, Nk HGOs are run from various initial
conditions to estimate states of the kth subsystem, and at
each time instant, the performance criterion µki obtained from
µ̇ki = −αµki + (y − ŷki)

2 ∶ µki(0) = 0, α = 0.1 > 0 is checked
to find the best observer [28]. More clearly, the best observer
for subsystem k is chosen as σk(t) = argmin

i
(µki(t)), and

in turn, the best estimation is x̂kmul = x̂σk
. For multi-observer

approach, we will use three observers, Nk = 3, with initial con-
ditions x̂k1(0) = [+3 +3]T , x̂k2(0) = [−3 +3]T , and x̂k3(0) =
[+3 −3]T to estimate the states of subsystem k. Moreover,
the rest of design parameters of the HGOs employed in the
multi-observer method are chosen the same as the single HGO.
To be able to make a reasonable comparison between the
performance recovery of the MHGO-based controller and the
aforementioned methods, the design parameters (i.e., κk1, κk2,
εk), the number of observers (i.e., Nk), and initial conditions
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Fig. 7: Evolution of y1 = x11 + ν1(t) using state feed-
back, HGO-based, multi-observer-based, and MHGO-based
controllers with Nk = 3.
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Fig. 8: Evolution of y2 = x21 + ν2(t) using state feed-
back, HGO-based, multi-observer-based, and MHGO-based
controllers with Nk = 3.

(i.e., x̂ki , i = 1,⋯,Nk) of MHGO are set equal to the ones
selected for the multi-observer scheme. The RLS algorithm
design parameters are considered as Pk(0) = 103I2×2, β̂k1 =

β̂k2 = 0, β̂k3 = 1. Thus, it is clear that such a selection results
in x̂ko(0) = ∑

3
i=1 β̂ki(0)x̂

k
i (0) = x̂

k
3(0). Furthermore, σk(0) in

multi-observer is set as 3; hence all the observers have the
same initial condition, i.e., x̂ko(0) = x̂

k
mul(0) = x̂

k(0).
The performance of the system states under the state feed-

back controller as well as the discussed output feedback con-
trollers are illustrated in Figs. 7 and 8. These two figures obvi-
ously show that although the multi-observer-based controller
yields a better response in comparison to the conventional
HGO-based method, it does not outperform the MHGO-based
controller. In other words, the MHGO-based controller has
recovered the performance of the state feedback controller
much faster than the other two methodologies. As discussed
earlier and it is obvious from the zoomed parts in Figs. 7
and 8, performance of the state feedback controller cannot
be recovered perfectly due to the existence of measurement
noise ν(t). Because of the space limitation and the fact the
two subsystems behave similarly, only the observation errors
of the first subsystem are provided (Figs. 9 and 10). According
to these figures, one can easily see that the state estimation
errors of MHGO strategy converge to a small neighborhood
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Fig. 9: Estimation error of first state, x11, using conventional
HGO, multi-observer, and MHGO with Nk = 3.
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Fig. 10: Estimation error of second state, x12, using conven-
tional HGO, multi-observer, and MHGO with Nk = 3.

of the origin rapidly.
As mentioned in [28], [29], the multi-observer approach

provides better results when the number of observers is
increased. This implies that to assure that at least one of the
models is sufficiently close to the plant, a quite large number
of models is required. Hence, to make a more comprehensive
comparison and show that the MHGO-based controller can
outperform the multi-observer-based controller even when the
number of observers are increased, another simulation with
Nk = 81 is carried out. In this simulation, all the design
parameters are chosen the same as the previous scenario.
For providing the initial conditions of observers for subsys-
tem k, four points [+3 +3]T , [+3 −3]T , [−3 +3]T , and
[−3 −3]T are considered as the vertices of uncertainty region
Kk, within which the initial conditions of subsystem k lies.
Then, Kk is sampled uniformly to obtain 81 initial conditions
for each set of observers. Simulation results are presented in
Figs. 11-14. Figs. 11 and 12 clearly show that performance of
the multi-observer-based approach is improved in comparison
to the multi-observer with Nk = 3 (see Figs. 7 and 8);
however, it is computationally more expensive than that case.
These figures also demonstrate that the MHGO-based control
approach results in a better performance in this scenario as
well. It is worth noting that in these simulations the MHGO-
based controller with Nk = 3 also outperforms the multi-
observer-based controller with Nk = 81, which demonstrates
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Fig. 11: Evolution of y1 = x11 + ν1(t) using state feed-
back, HGO-based, multi-observer-based, and MHGO-based
controllers with Nk = 81.
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Fig. 12: Evolution of y2 = x21 + ν2(t) using state feed-
back, HGO-based, multi-observer-based, and MHGO-based
controllers with Nk = 81.

the superiority of the MHGO-based strategy (refer to Figs. 7,
8, 11, 12). The obtained observations errors are also shown
in Figs. 13 and 14, based on which it is clear that the
MHGO scheme forces the observation errors to tend to a small
neighborhood of the origin faster than other methods.

VI. CONCLUSIONS

This paper investigates the analysis of the performance of
MHGO-based controllers when the system output is contami-
nated by measurement noise. It is well-known that in this case,
increasing the gain of a single observer deteriorates the steady
state bound of estimation error. Hence, one cannot choose
an arbitrarily large gain to speed up the transient response,
which is necessary for control purposes. The MHGO utilizes
the observations obtained from various sources and introduces
new design parameters. In turn, it provides a suitable tool for
solving the aforementioned trade-off in conventional HGO.
The necessary conditions under which such a structure was
capable of recovering performance of the state feedback con-
trollers in the presence of measurement noise were derived,
and the stability of the closed-loop system was investigated.
Two simulations were carried out for comparison purposes and
to validate the theoretical discussions.

Several simulations performed on various dynamical sys-
tems have shown that the MHGO-based control strategy has a
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Fig. 13: Estimation error of first state, x11, using conventional
HGO, multi-observer, and MHGO with Nk = 81.
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Fig. 14: Estimation error of second state, x21, using conven-
tional HGO, multi-observer, and MHGO with Nk = 81.

larger region of attraction in comparison to the conventional
HGO. Further investigation of this property and providing a
rigorous proof for that is worthwhile.
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